许多关于交易书籍提到,每个种类市场和每一只交易的股票(或商品或…)都有不同的规则。没有“一刀切”的东西。因为每种盘的操盘的风格不同,不可能一个策略能适应所有的市场。
前面的指标默认值都是15,可以通过优化模块调节这个参数,看看那个周期适合当前这只股票或市场。
通过修改SMA的周期来测试那个周期能达到盈利最大,为了方便查看对比,把买卖的日志输出先关闭了。可以很清晰的看出同一个交易日,不同的周期下的买卖盈利和亏损情况。
源码
# -*- coding: utf-8 -*-
"""
backtrader手册样例代码
@author: 一块自由的砖
"""
#############################################################
#import
#############################################################
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import os,sys
import pandas as pd
import backtrader as bt
#############################################################
#global const values
#############################################################
#############################################################
#static function
#############################################################
#############################################################
#class
#############################################################
# Create a Stratey
class TestStrategy(bt.Strategy):
params = (
('maperiod', 15),
('printlog', False),
)
def log(self, txt, dt=None, doprint=False):
''' Logging function for this strategy,这里定义日志的显示格式'''
if self.params.printlog or doprint:
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
# Keep a reference to the "close" line in the data[0] dataseries(获取收盘价)
self.dataclose = self.datas[0].close
# To keep track of pending orders and buy price/commission(价格、佣金)
self.order = None
self.buyprice = None
self.buycomm = None
# Add a MovingAverageSimple indicator
self.sma = bt.indicators.SimpleMovingAverage(self.datas[0], period=self.params.maperiod)
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
# Check if an order has been completed
# Attention: broker could reject order if not enough cash
if order.status in [order.Completed]:
if order.isbuy():
# 实际发生买单的价格,成本,佣金
self.log(
'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price, order.executed.value, order.executed.comm))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
elif order.issell():
# 实际发生卖单的价格,成本,佣金
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price, order.executed.value, order.executed.comm))
# 发生买单时的交易日的索引
self.bar_executed = len(self)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log('Order Canceled/Margin/Rejected')
# Write down: no pending order
self.order = None
def notify_trade(self, trade):
if not trade.isclosed:
return
# 一次卖出后交易完成后的收益情况: gross 毛利 net 净/纯利
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
(trade.pnl, trade.pnlcomm))
def next(self):
# Simply log the closing price of the series from the reference(调用日志方法,显示收盘价)
self.log('Close, %.2f' % self.dataclose[0])
# Check if an order is pending ... if yes, we cannot send a 2nd one
if self.order:
return
# Check if we are in the market(检查是否持股)
if not self.position:
# 判定当前交易日的收盘价是否小于的15日的均值
if self.dataclose[0] > self.sma[0]:
# previous close less than the previous close
# BUY, BUY, BUY!!! 购买动作,创建买单,给买入价
self.log('BUY CREATE, %.2f' % self.dataclose[0])
# Keep track of the created order to avoid a 2nd order
self.order = self.buy()
else:
# Already in the market ... we might sell,持股情况下,收盘价是否小于15日的均值
if self.dataclose[0] < self.sma[0]:
# SELL, SELL, SELL!!! (with all possible default parameters)
self.log('SELL CREATE, %.2f' % self.dataclose[0])
# Keep track of the created order to avoid a 2nd order
self.order = self.sell()
def stop(self):
self.log('(MA Period %2d) Ending Value %.2f' %
(self.params.maperiod, self.broker.getvalue()), doprint=True)
#############################################################
#global values
#############################################################
#############################################################
#global function
#############################################################
# 通过读取cvs文件,获取想要的数据
def get_dataframe():
# Get a pandas dataframe(这里是股票数据文件放的目录路径)
datapath = 'qtbt\data\stockinfo.csv'
# 数据转换用临时文件路径和名称,用完后删除
tmpdatapath = datapath + '.tmp'
print('-----------------------read csv---------------------------')
dataframe = pd.read_csv(datapath,
skiprows=0,
header=0,
parse_dates=True,
index_col=0)
# 定义交易日期格式
dataframe.trade_date = pd.to_datetime(dataframe.trade_date, format="%Y%m%d")
# 原始cvs数据有很多列,这里组织需要使用的数据列,生成目标数据的tmp数据文件后,读取需要的数据
dataframe['openinterest'] = '0'
feedsdf = dataframe[['trade_date', 'open', 'high', 'low', 'close', 'vol', 'openinterest']]
feedsdf.columns =['datetime', 'open', 'high', 'low', 'close', 'volume', 'openinterest']
# 按照交易日期升序排列
feedsdf.set_index(keys='datetime', inplace =True)
# 生成临时文件
feedsdf.iloc[::-1].to_csv(tmpdatapath)
# 获取需要使用的数据
feedsdf = pd.read_csv(tmpdatapath, skiprows=0, header=0, parse_dates=True, index_col=0)
# 删除tmp临时文件
if os.path.isfile(tmpdatapath):
os.remove(tmpdatapath)
print(tmpdatapath+" removed!")
# 返回需要的数据
return feedsdf
########################################################################
#main
########################################################################
if __name__ == '__main__':
# Create a cerebro entity(创建cerebro)
cerebro = bt.Cerebro()
# Add a strategy(加入自定义策略,可以设置自定义参数,方便调节)
strats = cerebro.optstrategy(TestStrategy, maperiod=range(10, 31))
# Get a pandas dataframe(获取dataframe格式股票数据)
feedsdf = get_dataframe()
# Pass it to the backtrader datafeed and add it to the cerebro(加入数据)
data = bt.feeds.PandasData(dataname=feedsdf)
# 加入数据到Cerebro
cerebro.adddata(data)
# Add a FixedSize sizer according to the stake(国内1手是100股,最小的交易单位)
cerebro.addsizer(bt.sizers.FixedSize, stake=100)
# Set our desired cash start(给经纪人,可以理解为交易所股票账户充钱)
cerebro.broker.setcash(100000.0)
# Set the commission - 0.1% ... divide by 100 to remove the %
cerebro.broker.setcommission(commission=0.001)
# Run over everything(执行回测)
cerebro.run()
说明:
1 周期参数变为数组方式
2 日志增加了控制输出参数
运行输出:
qtbt\data\stockinfo.csv.tmp removed!
2021-09-30, (MA Period 10) Ending Value 99807.27
2021-09-30, (MA Period 11) Ending Value 99862.36
2021-09-30, (MA Period 12) Ending Value 99855.34
2021-09-30, (MA Period 13) Ending Value 99848.53
2021-09-30, (MA Period 14) Ending Value 99835.18
2021-09-30, (MA Period 15) Ending Value 99769.51
2021-09-30, (MA Period 16) Ending Value 99738.97
2021-09-30, (MA Period 17) Ending Value 99692.26
2021-09-30, (MA Period 19) Ending Value 99735.72
2021-09-30, (MA Period 20) Ending Value 99735.19
2021-09-30, (MA Period 18) Ending Value 99705.27
2021-09-30, (MA Period 22) Ending Value 99788.41
2021-09-30, (MA Period 21) Ending Value 99756.31
2021-09-30, (MA Period 23) Ending Value 99802.98
2021-09-30, (MA Period 24) Ending Value 99819.86
2021-09-30, (MA Period 25) Ending Value 99888.39
2021-09-30, (MA Period 28) Ending Value 99949.61
2021-09-30, (MA Period 26) Ending Value 99884.57
2021-09-30, (MA Period 27) Ending Value 99883.51
2021-09-30, (MA Period 30) Ending Value 99982.50
2021-09-30, (MA Period 29) Ending Value 99965.54
看输出,判定买入,卖出的指标不是很好。如论如何调整周期都是赔钱,30的周期是赔的最少。