钱多多小栈
专注量化回测的站点

Backtrader-快速开始(优化)

许多关于交易书籍提到,每个种类市场和每一只交易的股票(或商品或…)都有不同的规则。没有“一刀切”的东西。因为每种盘的操盘的风格不同,不可能一个策略能适应所有的市场。

前面的指标默认值都是15,可以通过优化模块调节这个参数,看看那个周期适合当前这只股票或市场。

通过修改SMA的周期来测试那个周期能达到盈利最大,为了方便查看对比,把买卖的日志输出先关闭了。可以很清晰的看出同一个交易日,不同的周期下的买卖盈利和亏损情况。

源码

# -*- coding: utf-8 -*-
"""
backtrader手册样例代码
@author: 一块自由的砖
"""
#############################################################
#import
#############################################################
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import os,sys
import pandas as pd
import backtrader as bt
#############################################################
#global const values
#############################################################
#############################################################
#static function
#############################################################
#############################################################
#class
#############################################################
# Create a Stratey
class TestStrategy(bt.Strategy):
    params = (
        ('maperiod', 15),
        ('printlog', False),
    )

    def log(self, txt, dt=None, doprint=False):
        ''' Logging function for this strategy,这里定义日志的显示格式'''
        if self.params.printlog or doprint:
            dt = dt or self.datas[0].datetime.date(0)
            print('%s, %s' % (dt.isoformat(), txt))

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries(获取收盘价)
        self.dataclose = self.datas[0].close
        # To keep track of pending orders and buy price/commission(价格、佣金)
        self.order = None
        self.buyprice = None
        self.buycomm = None
        # Add a MovingAverageSimple indicator
        self.sma = bt.indicators.SimpleMovingAverage(self.datas[0], period=self.params.maperiod)

    def notify_order(self, order):
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return
        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        if order.status in [order.Completed]:
            if order.isbuy():
                # 实际发生买单的价格,成本,佣金
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price, order.executed.value, order.executed.comm))
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
            elif order.issell():
                #  实际发生卖单的价格,成本,佣金
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price, order.executed.value, order.executed.comm))
            # 发生买单时的交易日的索引
            self.bar_executed = len(self)

        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        self.order = None

    def notify_trade(self, trade):
        if not trade.isclosed:
            return
        # 一次卖出后交易完成后的收益情况: gross 毛利  net 净/纯利
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))

    def next(self):
        # Simply log the closing price of the series from the reference(调用日志方法,显示收盘价)
        self.log('Close, %.2f' % self.dataclose[0])
        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return
        # Check if we are in the market(检查是否持股)
        if not self.position:
            # 判定当前交易日的收盘价是否小于的15日的均值
            if self.dataclose[0] > self.sma[0]:
                # previous close less than the previous close
                # BUY, BUY, BUY!!! 购买动作,创建买单,给买入价
                self.log('BUY CREATE, %.2f' % self.dataclose[0])
                # Keep track of the created order to avoid a 2nd order
                self.order = self.buy()
        else:
            # Already in the market ... we might sell,持股情况下,收盘价是否小于15日的均值
            if self.dataclose[0] < self.sma[0]:
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])
                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()
    def stop(self):
        self.log('(MA Period %2d) Ending Value %.2f' %
                 (self.params.maperiod, self.broker.getvalue()), doprint=True)
#############################################################
#global values
#############################################################
#############################################################
#global function
#############################################################
# 通过读取cvs文件,获取想要的数据
def get_dataframe():
    # Get a pandas dataframe(这里是股票数据文件放的目录路径)
    datapath = 'qtbt\data\stockinfo.csv'
    # 数据转换用临时文件路径和名称,用完后删除
    tmpdatapath = datapath + '.tmp'
    print('-----------------------read csv---------------------------')
    dataframe = pd.read_csv(datapath,
                                skiprows=0,
                                header=0,
                                parse_dates=True,
                                index_col=0)
    # 定义交易日期格式
    dataframe.trade_date =  pd.to_datetime(dataframe.trade_date, format="%Y%m%d")
    # 原始cvs数据有很多列,这里组织需要使用的数据列,生成目标数据的tmp数据文件后,读取需要的数据
    dataframe['openinterest'] = '0'
    feedsdf = dataframe[['trade_date', 'open', 'high', 'low', 'close', 'vol', 'openinterest']]
    feedsdf.columns =['datetime', 'open', 'high', 'low', 'close', 'volume', 'openinterest']
    # 按照交易日期升序排列
    feedsdf.set_index(keys='datetime', inplace =True)
    # 生成临时文件
    feedsdf.iloc[::-1].to_csv(tmpdatapath)
    # 获取需要使用的数据
    feedsdf = pd.read_csv(tmpdatapath, skiprows=0, header=0, parse_dates=True, index_col=0)
    # 删除tmp临时文件
    if os.path.isfile(tmpdatapath):
        os.remove(tmpdatapath)
        print(tmpdatapath+" removed!")
    # 返回需要的数据
    return feedsdf
########################################################################
#main
########################################################################
if __name__ == '__main__':
    # Create a cerebro entity(创建cerebro)
    cerebro = bt.Cerebro()
    # Add a strategy(加入自定义策略,可以设置自定义参数,方便调节)
    strats = cerebro.optstrategy(TestStrategy, maperiod=range(10, 31))
    # Get a pandas dataframe(获取dataframe格式股票数据)
    feedsdf = get_dataframe()
    # Pass it to the backtrader datafeed and add it to the cerebro(加入数据)
    data = bt.feeds.PandasData(dataname=feedsdf)
    # 加入数据到Cerebro
    cerebro.adddata(data)
    # Add a FixedSize sizer according to the stake(国内1手是100股,最小的交易单位)
    cerebro.addsizer(bt.sizers.FixedSize, stake=100)
    # Set our desired cash start(给经纪人,可以理解为交易所股票账户充钱)
    cerebro.broker.setcash(100000.0)
    # Set the commission - 0.1% ... divide by 100 to remove the %
    cerebro.broker.setcommission(commission=0.001)
    # Run over everything(执行回测)
    cerebro.run()

说明:

1 周期参数变为数组方式

2 日志增加了控制输出参数

运行输出:

qtbt\data\stockinfo.csv.tmp removed!
2021-09-30, (MA Period 10) Ending Value 99807.27
2021-09-30, (MA Period 11) Ending Value 99862.36
2021-09-30, (MA Period 12) Ending Value 99855.34
2021-09-30, (MA Period 13) Ending Value 99848.53
2021-09-30, (MA Period 14) Ending Value 99835.18
2021-09-30, (MA Period 15) Ending Value 99769.51
2021-09-30, (MA Period 16) Ending Value 99738.97
2021-09-30, (MA Period 17) Ending Value 99692.26
2021-09-30, (MA Period 19) Ending Value 99735.72
2021-09-30, (MA Period 20) Ending Value 99735.19
2021-09-30, (MA Period 18) Ending Value 99705.27
2021-09-30, (MA Period 22) Ending Value 99788.41
2021-09-30, (MA Period 21) Ending Value 99756.31
2021-09-30, (MA Period 23) Ending Value 99802.98
2021-09-30, (MA Period 24) Ending Value 99819.86
2021-09-30, (MA Period 25) Ending Value 99888.39
2021-09-30, (MA Period 28) Ending Value 99949.61
2021-09-30, (MA Period 26) Ending Value 99884.57
2021-09-30, (MA Period 27) Ending Value 99883.51
2021-09-30, (MA Period 30) Ending Value 99982.50
2021-09-30, (MA Period 29) Ending Value 99965.54

看输出,判定买入,卖出的指标不是很好。如论如何调整周期都是赔钱,30的周期是赔的最少。

未经允许不得转载:钱多多量化小栈 » Backtrader-快速开始(优化)